Altering enzymatic activity: recruitment of carboxypeptidase activity into an RTEM beta-lactamase/penicillin-binding protein 5 chimera.
نویسندگان
چکیده
The D-Ala-D-Ala carboxypeptidases/transpeptidases (penicillin-binding proteins, PBPs) share considerable structural homology with class A beta-lactamases (EC 3.5.2.6), although these beta-lactamases have no observable D-Ala-D-Ala carboxypeptidase activity. With the objective of recruiting such activity into a beta-lactamase background, we have prepared a chimeric protein by inserting a 28-amino acid segment of PBP-5 of Escherichia coli in place of the corresponding region of the RTEM-1 beta-lactamase. The segment thus inserted encompasses two residues conserved in both families: Ser-70, which forms the acyl-enzyme intermediate during beta-lactam hydrolysis, and Lys-73, whose presence has been shown to be necessary for catalysis. This chimera involves changes of 18 residues and gives a protein that differs at 7% of the residues from the parent. Whereas RTEM beta-lactamase has no D-Ala-D-Ala carboxypeptidase activity, that of the chimera is significant and is, in fact, about 1% the activity of PBP-5 on diacetyl-L-Lys-D-Ala-D-Ala; in terms of free energy of activation, the chimera stabilizes the transition state for the reaction to within about 2.7 kcal/mol of the stabilization achieved by PBP-5. Furthermore, the chimera catalyzes hydrolysis exclusively at the carboxyl-terminal amide bond which is the site of cleavage by D-Ala-D-Ala carboxypeptidase. Though containing all those residues that are conserved throughout class A beta-lactamases and are thought to be essential for beta-lactamase activity, the chimera has considerably reduced activity (approximately 10(-5) on penams such as penicillins and ampicillins as substrates. As a catalyst, the chimera shows an induction period of approximately 30 min, reflecting a slow conformational rearrangement from an inactive precursor to the active enzyme.
منابع مشابه
Role of penicillin-binding proteins in the initiation of the AmpC beta-lactamase expression in Enterobacter cloacae.
Penicillin-binding proteins (PBPs) are involved in the regulation of beta-lactamase expression by determining the level of anhydromuramylpeptides in the periplasmatic space. It was hypothesized that one or more PBPs act as a sensor in the beta-lactamase induction pathway. We have performed induction studies with Escherichia coli mutants lacking one to four PBPs with DD-carboxypeptidase activity...
متن کاملAn alkaline D-stereospecific endopeptidase with beta-lactamase activity from Bacillus cereus.
We purified a novel extracellular D-stereospecific endopeptidase, alkaline D-peptidase (D-stereospecific peptide hydrolase, EC 3.4.11.-), to homogeneity from the culture broth of the soil bacterium Bacillus cereus strain DF4-B. The Mr of the enzyme was 37,952, and it was composed of a single polypeptide chain. The optimal pH for activity was approximately 10.3. The enzyme was strictly D-stereos...
متن کاملIsolation of a Penicillin Acylase Producing E.coli and Kinetic Characterization of the Whole Cell Enzyme Activity
Penicillin acylase (EC 3.5.1.11) has been a target of study for a long time because of its pivotal role in the deacylation of the penicillin into the 6- aminopenicillanic acid (6-APA) and the side-chain organic acids. This property of penicillin acylase has been exploited commercially for large scale production of 6-APA, which is the key intermediate in the manufacture of semi-synthetic penicil...
متن کاملCrystal structure of the Bacillus subtilis penicillin-binding protein 4a, and its complex with a peptidoglycan mimetic peptide.
The genome of Bacillus subtilis encodes 16 penicillin-binding proteins (PBPs) involved in the synthesis and/or remodelling of the peptidoglycan during the complex life cycle of this sporulating Gram-positive rod-shaped bacterium. PBP4a (encoded by the dacC gene) is a low-molecular mass PBP clearly exhibiting in vitro DD-carboxypeptidase activity. We have solved the crystal structure of this pro...
متن کاملMutation in Pseudomonas aeruginosa causing simultaneous defects in penicillin-binding protein 5 and in enzyme activities of penicillin release and D-alanine carboxypeptidase.
Penicillin-binding protein 5 in Pseudomonas aeruginosa had moderately penicillin-sensitive D-alanine carboxypeptidase activity. As in Escherichia coli, a defect in this enzyme activity was not lethal.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 87 7 شماره
صفحات -
تاریخ انتشار 1990